
Adaptive Automated GUI Testing
Producing Test Frameworks to Withstand Change

2

Abstract

Although QA and Development managers may see many challenges in creating an automated
GUI testing framework, it is possible to make a test framework that is both effective and main-
tainable. Challenges a QA or Development manager may consider include:

 - How can I ensure the framework provides additional value? - Can automated GUI testing work with the kind of software I test? - How can I ensure the test framework effectively detects regressions? - How can I ensure the framework remains useful as my product evolves? - Will ongoing maintenance take too much time?

Solutions exist for all of these questions, but it does require strategic planning, participation
from all departments, and buy-in from all team members.

This article will describe and give examples of some considerations to help design a test
framework that produces adaptive tests and enables teams to keep up with the evolution of
today’s software industry.

Trend

QA managers faced a wide range of challenges in recent years:

 - Influx of rapid application development methodologies (e.g. Agile, extreme programming) - Expanding product lines, often on multiple technology platforms - New QA automated testing frameworks and technologies

Some of these trends have been both good and bad for QA. For example, Agile places signifi-
cant emphasis on testing. According to Belatrix, an industry expert in Agile development and
testing, “Agile development integrates testing into the development process, verses having it
as a separate phase. Testing therefore is an integral part of the core software development
and actively participates though out the software coding process.”* However, both Develop-
ment and Quality Assurance departments have scrambled to adapt to these new methodolo-
gies. Many have rushed their testing cycles while also attempting to verify multiple packages
concurrently.

At the same time, many new QA testing frameworks have become available. This provides
teams with new, powerful tools. However, these new tools and methodologies come with new
expectations, especially for automated GUI testing.

Incorporating automated GUI regression testing into an ever-evolving product, and throughout
the entire product lifecycle, requires not only the buy-in and continuous efforts of both Devel-
opment and Quality Assurance, but also an automated GUI regression test framework capable
of adapting and growing with your product.

3

Problem

While adapting to new development methodologies, software companies around the world are
also trying to determine how to best ensure any regressions are quickly identified, while also
ensuring the quality of each new feature before the package hits the hands of consumers.

Because testing now occurs throughout the application life cycle, QA teams face new challenges
including: shorter testing cycles, often with overlapping timetables, as well as accommodating
a variety of feature or code changes across each supported platform. Maintaining sufficient
testing coverage for each package and package variation creates significant challenges.

Some QA and Development teams have used automated GUI testing as an aid to regression
testing for many years. However, depending on the automated GUI regression test framework
implemented, the automated tests can either help or exacerbate the problem by creating a test
framework maintenance nightmare.

QA and Development teams need the ability to supplement their manual and unit testing with
reliable, rapid and repeatable tests. The challenge is to create an automated GUI regression
test framework that works with your product as it exists today, and is flexible and intelligent
enough to continue working as your product evolves. The magic solution, requiring zero main-
tenance, no matter the changes in your application, does not exist. And high-coverage, rapidly
created, automated GUI tests simply don’t have the flexibility and intelligence to evolve with
your product.

So, what solutions do exist? The remainder of this article will present methods and tools
for implementing an adaptive automated GUI regression test framework. That is, if you’re
dedicated and willing to put forth the effort now!

Solution Options

Correctly implementing an adaptive automated GUI regression test framework requires
careful planning and alignment with your organizational and software product needs. For
example, if the software within your organization is build on a cross-platform application and
UI framework such as Qt or Java, then the automated GUI testing tool must also support the
corresponding framework(s) and operating systems. Consider also, the volume and variety of
data the software exchanges, or how frequently objects shift or dynamically display within the
UI. Each consideration impacts the automated GUI regression testing tool features required to
implement your test framework without restricting your testing coverage and result-producing
capabilities from the gate. Settling for partial-product support weakens the effectiveness of the
entire undertaking before the project even begins.

4

When examining your software, ask the team which components of your application can benefit
most from automated GUI testing. froglogic’s blog discusses “Where to start?”, directing imple-
menters to repetitive tasks and script modularization.** Capture additional ideas by reviewing
existing manual test cases and procedures, or defect trends. HP examines how to identify
candidates for automated testing in their article “Best practices for implementing automated
functional testing solutions”. The author recommends, “focus[ing] automation efforts on
critical business processes” as well as “repetitive tasks”.***

Other implementation-critical considerations:

Record-and-playback with refactoring capabilities

Data-driven capabilities

Object-level data validation

Test execution order

Third-party integration capabilities

Complete command-line interface

Ability for Development team to extend or adapt

Native support for all platforms

Ability to interact with controls outside your software toolkit

Non-invasive interaction with your software

Exception and Error Handling

Test debugging capabilities

Distributed testing support

Test file format for versioning and portability

Cross-platform testing

Script maintenance and handling application change

5

Options Applied

One of the highest impact factors when implementing an automated GUI regression test
framework: Script maintenance and handling application change. The key with automated
GUI regression testing is not only how well it can regression test your application today, it’s if
those same tests will work tomorrow, and the effort required to in maintain and expand the test
framework going forward.

As a product evolves, so does the software design, features, layout or even workflow. Creating
and maintaining modularized tests, capable of quickly adapting to such changes, increases the
longevity of each test, set of tests, and test framework.

Take for example a Customer Relationship Management (CRM) solution: Often highly configu-
rable, with dynamic layouts and using business-rules based security and workflow. Depending
on the modules available to the signed-in user, the order and presence of visible components
may vary. Writing a test, which navigates to a specific component, regardless of other available
components, and confirms the component displayed as expected, represents a single basic
test.

Apply the aforementioned example to the following industry-standard approaches:

Approach 1: Image-based Recognition

Image-based Recognition captures images and

actions corresponding to each step performed

while. In some tools, variations of the images can

be captured in an effort to overcome minor graphi-

cal changes, which would otherwise cause the tool

to fail to locate the object(s) of interest.

Approach 2: Object-based Recognition

Object-based Recognition captures key properties

for each control on which an action was performed,

as well as the action performed. Captured objects

and a select set of their properties are stored in

a repository (often called an object repository or

object map) using a unique name derived from

the object. Any test can use the repository, and

in some tools, the repository is available across

more than one test suite or collection of tests.

Future recorded tests first check for the existence

of the object in the repository and only add a new

entry should it not exist.

During initial record and playback, both Approach 1 and Approach 2 execute without modifica-
tion or issue.

6

Due to a recent re-branding of the CRM tool, the list of components, while still present, have
taken on an ‘edged’ versus ‘rounded’ shape among other minor graphical design adjustments

Approach 1:

During scheduled test playback, the Image-based

Recognition tool fails to locate the component

clicked in the original recording. The results are

viewed the morning after the nightly execution

of tests completed, and the test is assigned to

a team member to update. The team member

re-runs the test, witnessing the issue, and cap-

tures new images for the test, accommodating the

change in UI design.

Approach 2:

During scheduled test playback, the Object-based

Recognition tool completes the test without issue.

Note the purpose of the test was not to validate the look and feel of the UI, but to confirm the
functionality; performing a specific set of actions navigated the to the expected component
within the application. Had the purpose of the test been to validate the graphical design of
the application, both tests would require updating the expected result to the new UI. Two very
different tests.

Multiple components, approximately 10, in the CRM tool received alternate names to accom-
modate shifting trends in CRM terminology. Teams are prepared and aware of the change, and
update the tests accordingly.

Approach 1:

Using the Image-based Recognition tool, the team

captures new images for the test, and once again,

the test is running without issue.

Approach 2:

Using the Object-based Recognition tool, the team

opens the repository, updates the label property

associated with the changed component to reflect

the new naming convention. The test remains

untouched, and runs again without issue.

7

Now imagine this single component was used throughout an entire test suite. Referenced
hundreds of times.

Approach 1:

Using the Image-based Recognition tool, locate all

instances of the component used in the test suite

and update each instance to point at the newly

captured image.

Approach 2:

Using the Object-based Recognition tool, the team

opens the repository, updates the label property

associated with the changed component to reflect

the new naming convention. The all tests remain

untouched, and run again without issue.

The team has now been tasked to create a test that generates a new support ticket, retrieves
the support ticket ID and date/time stamp, modifies the new ticket by adding a comment, and
verifies the ticket ID remains unchanged, the creation date displays in the expected format
and matching the data/time stamp retrieved upon ticket creation, and the last modified status
contains the expected result.

Approach 1:

Using the Image-based Recognition tool, images

are captured of the actions and Optical Charac-

ter Recognition (ORC) is used to interpret and

retrieve text from a user-specified location in each

image containing text to be used as data. The

interpreted text is later compared to a new OCR

interpretation. In some tools, an area for capture

must be defined. The defined area will pull all text

visible. Should the desired text fall outside of the

defined range that text will not be included, and

should other text appear within the range, that

text would also be included in the capture. This

creates a potential for error when retrieving data

from the AUT, as the target cannot be limited to the

precise object of interest. In the event the date ini-

tially captured, while the same date, appears in an

alternate format, a combination of OCR and string

parsing must be implemented both for the initially

captured date and the date for comparison.

Approach 2:

Using the Object-based Recognition tool, steps,

objects and properties are captured. Verification

points, or checkpoints, are recorded, identifying

the objects containing the ticket ID and date/time

stamps. The test is modified after the recording

is complete to save the verification point object

values, and compare those values with basic

scripting logic to the corresponding data later in

the script. In the event the date initially captured,

while the same date, appears in an alternate

format, a datetime class available for example in

Python, can be used to parse dates, and compare

the appropriate date components. Furthermore

a regular expression, or again a datetime class,

can be used to confirm each date displays in the

format expected. Simple lines of script, that even

those not familiar with the scripting language in

use, can search the web (assuming the scripting

language isn’t proprietary to the tool) and find

an answer within seconds. Changes to the date

format are a simple change to the scripting logic.

8

Forgot to mention, this tool is cross-platform, and tests must run on Windows, Mac and Linux.

Approach 1:

Using the Image-based Recognition tool, assum-

ing the tool is capable of running natively on

Windows, Mac and Linux, OS-specific images

are captured for each of the alternate operating

systems and operating system variations. A sep-

arate set of tests must be either maintained for

each OS and OS variation, or logic is incorporated

into all scripts to use the OS-specific images for

each step.

Approach 2:

Using the Object-based Recognition tool, assum-

ing the tool is capable of running natively on

Windows, Mac and Linux or Unix, no changes are

required, and tests run against each OS and OS

variation without issue.

Options Compared

These scenarios illustrate how dramatically efforts differ in the image-based and object-based
recognition approaches following initial test creation.

Although the initial test creation began with roughly equal effort, maintenance efforts between
approaches quickly deviated, even with minor application changes.

The chart below compares the anticipated maintenance time needed using the two approaches
for each scenario:

Initial Test Rebranding Alternate Names Test Reuse Data Validation

50 min

40 min

30 min

20 min

60 min

10 min

0 min

Image-based Recognition Object-based Recognition

Figure 1: Maintenance Effort Duration

9

Note also that the Data Validation scenario would potentially require even more effort when
using Image-Based Recognition due to the stability and accuracy challenges inherent in
extracting application data using image-based recognition.

Looking at the data in “Figure 1: Maintenance Effort Duration” , a two-test scenario, undergoing
three relatively simple software application changes would require an estimated 31 man-hours
using the Object-based Recognition approach vs. an estimated 145 man-hours using the
Image-based Recognition approach.

Expand that collection of tests from two to one hundred, and you’re now facing an automated
GUI regression test framework whose maintenance can cost you either 3,100 man-hours or
14,500 man-hours given three updates to existing tests per release cycle. Now multiply that by
ten similar iterations per year, and you see how dramatic the difference is.

Image-based Recognition Object-based Recognition

14,500 man-hours

3,100 man-hours

Figure 2: Maintenance Effort Variation

In the end, the object-based recognition approach requires just 21% of the maintenance time
that would be required using the image-based recognition approach. This difference greatly
outweighs any benefits that might come from creating tests slightly more quickly using the
image-based recognition approach.

10

Conclusion

To produce an automated GUI test framework that interacts with your software and is better
able to adapt to changes, QA and Development managers need to focus on object-based recog-
nition approaches. Using partially-supported or image-based approaches will only result in
dramatically more pain, maintenance, and re-work.

A test framework that’s aware of your application and all corresponding toolkits, with the tech-
nology necessary to accurately and effectively interact with your application is one of the most
critical factors that determine a QA team’s ability to create and maintain a robust and stable
test framework. The ability to quickly and easily adapt tests for change from a central location,
as well as modularize and share test segments and test logic all impact maintenance time.

Now is the time to identify the critical
workflows and business processes of your
software, and implement tests for repetitive
tasks. You can use varying data to drive repet-
itive tasks, validating a variety of scenarios.
You can build your framework with the future
in mind; extracting and organizing tests to
optimize re-use. You can document and collaborate, sharing the test framework throughout all
phases of the application lifecycle, accessible from a centrally located and versioning capable
portal. You can educate across teams, demonstrating how and why the test framework will help
at each phase, reducing commonly overlooked regressions, and validating critical application
paths are operational following the latest code or environment change.

See how Squish produces an
automated GUI regression test
framework that withstands change.

Evaluate today!

* “Agile Testing Best Practices.” Whitepaper: Agile Software Testing. 2013. Belatrix Software Factory. 19 Nov. 2013

<http://www.belatrixsf.com/index.php/whitepaper-agile-software-testing>.

** ”Squish Tip of the Week: Where to start?” Froglogic’s blog. 12 Nov. 2013. Froglogic. 20 Nov. 2013

<http://blog.froglogic.com/2013/11/squish-tip-of-the-week-where-to-start/>.

*** “Best practices for implementing automated functional testing solutions.” Five keys to automating QA testing.

Nov. 2012. Rev4. HP. 19 Nov. 2013 <http://on.hp.com/LP=2826>.

http://www.froglogic.com/squish/evaluate.php

