
Object vs Image-based Testing
Producing Automated GUI Tests to Withstand Change



2

Handling Application Change

Script maintenance, and handling application change, is one of the highest impact factors 
when implementing an automated GUI regression test framework. The key with automated GUI 
regression testing is not only how well the tool can regression test your application today, it’s if 
those same tests will work tomorrow, and the effort required to in maintain and expand the test 
framework going forward.

As a product evolves, so does the software design, features, layout or even workflow. Creating 
and maintaining modularized tests, capable of quickly adapting to such changes, increases the 
longevity of each test, set of tests, and test framework.

Take for example a Customer Relationship Management (CRM) solution: Often highly configu-
rable, with dynamic layouts and using business-rules based security and workflow. Depending 
on the modules available to the signed-in user, the order and presence of visible components 
may vary. Writing a test, which navigates to a specific component, regardless of other available 
components, and confirms the component displayed as expected, represents a single basic 
test.

Apply the aforementioned example to the following industry-standard approaches:

Approach 1: Image-based Recognition

Image-based Recognition captures images and 

actions corresponding to each step performed. 

In some tools, variations of the images can be 

captured in an effort to overcome minor graphical 

changes, which would otherwise cause the tool to 

fail to locate the object(s) of interest.

Approach 2: Object-based Recognition

Object-based Recognition captures key proper-

ties for each control on which an action was per-

formed, as well as the action. Captured objects 

properties are stored in a repository (often called 

an object repository or object map) using a unique 

name derived from the object. Any test can use 

the repository, and in some tools, the repository 

is available across more than one test suite or col-

lection of tests. Future recorded tests first check 

for the existence of the object in the repository 

and only add a new entry should it not exist.

During initial record and playback, both Approach 1 and Approach 2 execute without modifica-
tion or issue. Due to a recent re-branding of the CRM tool, the list of components, while still 
present, have taken on an ‘edged’ versus ‘rounded’ shape among other minor graphical design 
adjustments



3

Approach 1:

During scheduled test playback, the Image-based 

Recognition tool fails to locate the component 

clicked in the original recording. The results are 

viewed the morning after the nightly execution 

of tests completed, and the test is assigned to 

a team member to update. The team member 

re-runs the test, witnessing the issue, and cap-

tures new images for the test, accommodating the 

change in UI design.

Approach 2:

During scheduled test playback, the Object-based 

Recognition tool completes the test without issue.

Note the purpose of the test was not to validate the look and feel of the UI, but to confirm the 
functionality; performing a specific set of actions navigated the to the expected component 
within the application. Had the purpose of the test been to validate the graphical design of 
the application, both tests would require updating the expected result to the new UI. Two very 
different tests.

Multiple components, approximately 10, in the CRM tool received alternate names to accom-
modate shifting trends in CRM terminology. Teams are prepared and aware of the change, and 
update the tests accordingly.

Approach 1:

Using the Image-based Recognition tool, the team 

captures new images for the test, and once again, 

the test is running without issue.

Approach 2:

Using the Object-based Recognition tool, the team 

opens the repository, updates the label property 

associated with the changed component to reflect 

the new naming convention. The tests remain 

untouched, and run again without issue.



4

Now imagine this single component was used throughout an entire test suite. Referenced 
hundreds of times.

Approach 1:

Using the Image-based Recognition tool, locate all 

instances of the component used in the test suite 

and update each instance to point at the newly 

captured image.

Approach 2:

Using the Object-based Recognition tool, the team 

opens the repository, updates the label property 

associated with the changed component to reflect 

the new naming convention. The all tests remain 

untouched, and run again without issue.

The team has now been tasked to create a test that generates a new support ticket, retrieves 
the support ticket ID and date/time stamp, modifies the new ticket by adding a comment, and 
verifies the ticket ID remains unchanged, the creation date displays in the expected format 
and matching the data/time stamp retrieved upon ticket creation, and the last modified status 
contains the expected result.

Approach 1:

Using the Image-based Recognition tool, images 

are captured of the actions and Optical Charac-

ter Recognition (ORC) is used to interpret and 

retrieve text from a user-specified location in each 

image containing text to be used as data. The 

interpreted text is later compared to a new OCR 

interpretation. In some tools, an area for capture 

must be defined. The defined area will pull all text 

visible. Should the desired text fall outside of the 

defined range that text will not be included, and 

should other text appear within the range, that 

text would also be included in the capture. This 

creates a potential for error when retrieving data 

from the AUT, as the target cannot be limited to the 

precise object of interest. In the event the date ini-

tially captured, while the same date, appears in an 

alternate format, a combination of OCR and string 

parsing must be implemented both for the initially 

captured date and the date for comparison.

Approach 2:

Using the Object-based Recognition tool, steps, 

objects and properties are captured. Verification 

points, or checkpoints, are recorded, identifying 

the objects containing the ticket ID and date/time 

stamps. The test is modified after the recording 

is complete to save the verification point object 

values, and compare those values with basic 

scripting logic to the corresponding data later in 

the script. In the event the date initially captured, 

while the same date, appears in an alternate 

format, a datetime class available for example in 

Python, can be used to parse dates, and compare 

the appropriate date components. Furthermore 

a regular expression, or again a datetime class, 

can be used to confirm each date displays in the 

format expected. Simple lines of script, that even 

those not familiar with the scripting language in 

use, can search the web (assuming the scripting 

language isn’t proprietary to the tool) and find 

an answer within seconds. Changes to the date 

format are a simple change to the scripting logic.



5

Forgot to mention, this tool is cross-platform, and tests must run on Windows, Mac and Linux.

Approach 1:

Using the Image-based Recognition tool, assum-

ing the tool is capable of running natively on 

Windows, Mac and Linux, OS-specific images 

are captured for each of the alternate operating 

systems and operating system variations. A sep-

arate set of tests must be either maintained for 

each OS and OS variation, or logic is incorporated 

into all scripts to use the OS-specific images for 

each step.

Approach 2:

Using the Object-based Recognition tool, assum-

ing the tool is capable of running natively on 

Windows, Mac and Linux or Unix, no changes are 

required, and tests run against each OS and OS 

variation without issue.

Options Compared

These scenarios illustrate how dramatically efforts differ in the image-based and object-based 
recognition approaches following initial test creation.

Although the initial test creation began with roughly equal effort, maintenance efforts between 
approaches quickly deviated, even with minor application changes. 

The chart below compares the anticipated maintenance time needed using the two approaches 
for each scenario:

Figure 1: Maintenance Effort Duration

Initial Test Rebranding Alternate Names Test Reuse Data Validation

50 min

40 min

30 min

20 min

60 min

10 min

0 min

Image-based Recognition Object-based Recognition



6

Note also that the Data Validation scenario would potentially require even more effort when 
using Image-Based Recognition due to the stability and accuracy challenges inherent in 
extracting application data using image-based recognition.

Looking at the data in “Figure 1: Maintenance Effort Duration” , a two-test scenario, undergoing 
three relatively simple software application changes would require an estimated 31 man-hours 
using the Object-based Recognition approach vs. an estimated 145 man-hours using the 
Image-based Recognition approach.

Expand that collection of tests from two to one hundred, and you’re now facing an automated 
GUI regression test framework whose maintenance can cost you either 3,100 man-hours or 
14,500 man-hours given three updates to existing tests per release cycle. Now multiply that by 
ten similar iterations per year, and you see how dramatic the difference is.

Figure 2: Maintenance Effort Variation

Image-based Recognition Object-based Recognition

14,500 man-hours

3,100 man-hours

In the end, the object-based recognition approach requires just 21% of the maintenance time 
that would be required using the image-based recognition approach. This difference greatly 
outweighs any benefits that might come from initially creating tests slightly more quickly using 
the image-based recognition approach. 



7

Conclusion

To produce an automated GUI test framework that interacts with your software and is better 
able to adapt to changes, QA and Development teams need to focus on object-based recog-
nition approaches. Using partially-supported or image-based approaches will only result in 
dramatically more pain, maintenance, and re-work. 

A test framework that’s aware of your application and all corresponding toolkits, with the tech-
nology necessary to accurately and effectively interact with your application is one of the most 
critical factors in a team’s ability to create and maintain a robust and stable test framework. 
The ability to quickly and easily adapt tests for change from a central location, as well as modu-
larize and share test segments and test logic all impact maintenance time. 

Now is the time to identify the critical 
workflows and business processes of your 
software, and implement tests for repetitive 
tasks. You can use varying data to drive repet-
itive tasks, validating a variety of scenarios. 
You can build your framework with the future 
in mind; extracting and organizing tests to 
optimize re-use. You can document and collaborate, sharing the test framework throughout all 
phases of the application lifecycle, accessible from a centrally located and versioning capable 
portal. You can educate across teams, demonstrating how and why the test framework will help 
at each phase, reducing commonly overlooked regressions, and validating critical application 
paths are operational following the latest code or environment change.

See how Squish produces an 
automated GUI regression test 
framework that withstands change.

Evaluate today!


