
Squish Coco provides wrappers for standard compilers 
to build instrumented versions of applications – with no 
source code changes necessary. Executing a test suite 
against an instrumented application produces data that 
Squish Coco can analyze. This  analysis can be used to 
ensure that complete test coverage is achieved since it:

Finds untested code sections.

Finds redundant tests (i.e., tests that merely 
duplicate others).

Finds dead code (i.e., code that is never executed).

Computes the optimal order of test execution that 
will maximize the overall test coverage.

Compares the test coverage of two applications 
(e.g., two versions of an application) to identify 
the differences in test coverage – this makes it 
straightforward to add new tests to the new version 
to maintain the level of coverage.

Supported Platforms:

Windows (32- and 64-bit)

Linux (32- and 64-bit)

Mac OS X (32- and 64-bit) 

Embedded Operating Systems

UNIX (Solaris, AIX, ...)

In addition, Squish Coco can be made available and 
supported on other platforms and integrated with cus-
tom tool chains.

Squish Coco can be used at every stage of testing and 
with every testing method (unit tests, automated tests, 
manual tests, etc.). Furthermore, Squish Coco can 
merge multiple execution reports to provide advanced 
analysis.

A complete, cross-platform code coverage tool chain for C and C++ applications. 

“Squish Coco is a test engineer’s equivalent 
to a programmer’s debugger, only instead of 
helping to understand bugs, Squish Coco 
helps to reveal bugs by highlighting untested 
statements.”

Sébastien Fricker, Lead Developer



The Squish Coco Tools: - CoverageScanner this analyzes and instruments C 
and C++ applications. - CoverageBrowser a sophisticated GUI tool which 
displays and manages coverage analysis data and 
results. (Available to commercial licensees only.) - Microsoft® Visual Studio Add-in this generates 
code coverage configurations for all available C and 
C++ projects directly inside the Visual Studio IDE. 

Supported Coverage Levels:

Function coverage

Line coverage

Decision coverage

Condition coverage

Condition/decision coverage

More Information:

http://www.froglogic.com/squish/coco 
coco@froglogic.com

C++ code coverage analysis when the addressbook application 
is passed the -h (help) command line option. 

 1 int main(int argc, char **argv) { 
 2   QApplication app(argc, argv); 1 Executed code 
 3   if (argc == 2) { 0-1 argc == 2: was never false 
 4     QString arg(argv[1]); 1 Executed code 
 5     if (arg == “-h”  || 0-1 arg==“-h“: was never false 
 6       arg == “--help”) { 0 arg==“--help“: was never true or false 
 7       QTextStream out(stderr); 1 Executed code 
 8       return 1; 1 Executed code 
 9       out << “usage: “<<  argv[0] << “\n”; X Unreachable code 
 10     } - 
 11   } - 
 12   MainWindow mainWindow; 0 Never executed

Result Summary
Lines executed: 4 
Lines not executed: 2 
Lines of dead code: 1 
Expressions not covered: 3 
Decision branches not executed:  2




