

Hands-On Lab
[bookmark: _Toc225327784][bookmark: _Toc225327798]Authoring and Running Automated GUI Tests using Microsoft Test Manager 2012 and froglogic Squish

Lab version:	1.0.5
Last updated:	27/03/2013

[image: Macintosh HD:Users:flo:Downloads:froglogic.png]

Overview
This hands-on lab is part two out of a series of two labs showing how to use Microsoft Visual Studio 2012 and Microsoft Test Manager 2012 to run an automated Squish GUI tests.
Squish is a cross-platform, cross-device GUI test automation tool allowing to automate GUIs on a variety of platforms based on several different GUI technologies. The Squish for MS ALM plugin allows to centrally manage Squish GUI tests in TFS and to run them from Visual Studio, via TFS scheduled builds and continuous integration and via Microsoft Test Manager.
In this lab, you will learn how to author and run an automated GUI test using the Squish IDE. You will run the same test from Microsoft Visual Studio 2012 and Microsoft Test Manager 2012 and review the test results. For the setup and configuration that has to be completed before, please refer to the first lab of this series: Setup Microsoft Test Manager 2012 and froglogic Squish for Automated GUI Testing.
This hands-on lab is one out of a number of labs that deal with Microsoft Test Manager 2012. It focuses on running automated tests with Squish GUI Tester. To learn more about Microsoft Test Manager 2012 features that are unrelated to Squish GUI Tester, please refer to this this blog post.
[bookmark: _Toc225327785][bookmark: _Toc225327799]Prerequisites
In order to complete this lab you will need the Visual Studio 2012 virtual machine provided by Microsoft. For more information on acquiring and using this virtual machine, please see this blog post.
Besides, you need to complete the exercises in the previous lab, Setup Microsoft Test Manager 2012 and froglogic Squish for Automated GUI Testing, before being able to continue with this lab.

[bookmark: _Toc225327786][bookmark: _Toc225327800]Exercises
This Hands-On Lab comprises the following exercises:
Authoring a Manual Test
Authoring and Running an Automated Test using Squish GUI Tester
Running a Squish GUI Test from Microsoft Visual Studio 2012
Running a Squish GUI Test as Part of a Microsoft Test Manager 2012 Test Plan

Estimated time to complete this lab: 60 minutes.

Exercise 1: Authoring a Manual Test
In this exercise, you will learn how to create a manual test plan and populate it with steps. The plan can later be run to confirm the expected behavior of your software.
Start the virtual machine and log in as Julia. All user passwords are P2ssw0rd.
Open Microsoft Test Manager from Start | All Programs | Microsoft Visual Studio 2012 | Microsoft Test Manager.
Switch to Testing Center by clicking on Lab Center and selecting Testing Center.
If you are not in the test plan view already, click on Plan from the main menu. Microsoft Test Manager will connect to the most recently loaded test plan, which in this case is the test plan Default that we used in the previous lab. To be able to create a new test plan for the manual test, click on the test plan name Default in the upper right-corner.

[image:]
Figure 1
Currently opened test plan

Click on the Add button, enter the name AddressbookTestPlan into the field Plan name and click on Add to create the plan. Finally, click on Select plan to open it in Testing Center.

[image: dump:VSI:HandsOnLabTutorials:Screenshots:6_1.png]
Figure 2
Creating a new test plan

In the left pane, select AddressbookTestPlan and click on the New button in the right pane.

[image:]
Figure 3
Creating a new manual test

This creates a new Microsoft Test Manager test case and displays the configuration view for it. In the Title box, enter AddressbookTest.

[image: dump:VSI:HandsOnLabTutorials:Screenshots:23_2.png]Figure 4
Entering the name of the test

At this point, we’re ready to add steps to this manual test. Each step includes an Action, which describes the action the tester needs to perform. Optionally, a step can include an Expected Result, which describes the expected result of the given action.
In the Steps panel, create a step for each of the following Actions, only one of which has an Expected Result. The steps are shown in the table below.

	Action
	Expected Result

	Start Address Book application
	

	Create a new address book
	

	Add an address book entry
	

	Verify data entry
	Verify that the address book entry shows up in the list of addresses

[image:]
Figure 5
Insert the steps of the manual test

Save test case by clicking on the Save icon in the upper-right corner.

[image:]
Figure 6
Location of the save button

Note: The test case is saved as a project work item.

Now you are ready to run the test manually as it is described in the Lab Authoring and Running Manual Tests using Microsoft Test Manager 2012.
Once the manual test has passed on a regular basis, it makes sense to automate this test allowing us to e.g. re-execute this test as part of our nightly regression test plan. Therefor, in this Lab, we want to execute the same test as an automated test. Thus we are skipping the manual execution. As the next step, we are going to prepare the automated test execution.

Exercise 2: Authoring and Running an Automated Test using Squish GUI Tester
In this exercise, you will learn how to use the Squish GUI Tester to author and run an automated GUI test. The example test that you are going to execute automates an address book application that has been developed in the programming language Java. The application under test, the Java Runtime Environment and the Squish test suite were already installed as part of the Squish installation in the previous lab.
This exercise focuses on running the test cases that are contained in the example test suite. If you are interested in learning more about recording and authoring tests with Squish GUI Tester, please refer to the online manual at http://doc.froglogic.com/squish/latest/tutorial-getting-started-java.html.

Start the Squish IDE by the clicking on the Squish for Java icon on the desktop. The example test for this Lab is called suite_js and it will already be opened in the Test Suites view. The test suite contains three test cases, which you can open by double-clicking. This will open a script editor with the JavaScript source code of the test. Please note that Squish also supports many more scripting languages when authoring tests.

[image:]
Figure 7
Squish IDE and location of the test suite and test cases of the example test

As the next step, you are going to execute the complete test suite. This will automatically start the application under test and perform all the interaction that is defined in the three test cases.
To start execution of the test suite, click on the Play button in the Test Suites view. To execute a single test case instead of the complete test suite, you can click on the Play button right beside the test cases in the Test Cases list.

[image:]
Figure 8
Location of the play button in the Test Suites view

The Squish IDE will be hidden and the Control Bar will show up while the test runs. Squish will automatically start the address book application and automate it.
Once the test run is finished, the Squish IDE will show up again. You can find the results of the test run in the Test Results view of the IDE.

[image:]
Figure 9
Test Results view displaying the results of the test run

Exercise 3: Running a Squish GUI Test from Microsoft Visual Studio 2012
After having created and executed the GUI tests in Squish, the next step would be to integrate this test into a Visual Studio project. This would, for example, allow developers to run the Squish tests directly from Visual Studio while working on code changes of the application. Or, this can be used to put the Squish tests into TFS version controls.
In this exercise, you will learn how to create a Microsoft Visual Studio 2012 project that contains the Squish GUI test that we already executed in the last exercise. You will execute the same test in Microsoft Visual Studio 2012 and without the Squish IDE.
Open Microsoft Visual Studio from Start | All Programs | Microsoft Visual Studio 2012 | Microsoft Visual Studio.
First, we need to create a Visual Studio project that we will use to import the Squish GUI test to. Select menu File | New | Project… and open Installed | Visual C# | Test | Unit Test Project.

[image:]
Figure 10
Create a new Unit Test Project

Enter the name SquishTestProject and click on OK to create the project.

[image:]Figure 11
Entering the name and creating the project

Once the project has been created, a Unit Test file will show up. As we do not want to create a Unit Test, but run a Squish GUI test instead, we can safely delete the file. To do so, open Solution Explorer and select the file UnitTest1.cs in the solution. Right-click the file and select Delete from the context menu. You will be asked to prompt the deletion.

[image:]
Figure 12
Deleting the Unit Test file

Next, we need to add a new item to our project that will contain the Squish GUI test. Right-click the SquishTestProject in Solution Explorer and select Add | New Item….

[image:]
Figure 13
Adding a new item

Select Installed | Visual C# Items | Squish Test. Just leave the name its default of SquishTest1.st and click on Add.
[image:]
Figure 14
Squish Test type selection

The Squish Test will be created and opened as shown in the screenshot below.

[image:]
Figure 15
Squish Test in Visual Studio

So far we have not selected a Squish test suite. Click on the Browse button right beside the Test Suite field. In the file dialog that is opened, navigate to the folder
C:\Squish\squish-4.2.3-java-win32\examples\java\addressbook\suite_js and click on OK.

[image:]
Figure 16
Select Squish test suite for import

Select File | Save all to save the Squish test.
Finally, to execute the test in Visual Studio, open Test | Windows | Test Explorer. It might take a short while unit the test SquishTest1 shows up under Not Run Tests. Once it is visible, select Run All to start the test run.

[image:]
Figure 17
Start test run in Test Explorer

Visual Studio will run the test without the Squish IDE being involved. You will notice that the address book application is started and automated.

To open the result log of the test run, select SquishTest1 in Test Explorer. At the bottom of Test Explorer, click on the Output link to open the Test Output view. Click on the attachment with the file extension .trx and the Test Results view will show up.

[image:]
Figure 18
Opening the test result

[bookmark: _GoBack]To see more details of the result including the results of each verification, double-click on the result item in the Test Result list.

[image:]
Figure 19
Test result details

Exercise 4: Running a Squish GUI Test as Part of Microsoft Test Manager 2012 Test Plan
A tester will primarily work in MTM to manage tests and run them. One main feature of the Squish for MS ALM integration is to allow associating Squish GUI tests with MTM test cases. This allows running a MTM test case which will execute the automated Squish GUI test on a given test agent and report back the results.
In this exercise, you will learn how to run a Squish GUI test as part of a test plan in Microsoft Test Manager 2012. You will use the test plan that you created in exercise 1 and the Visual Studio project that you create in exercise 3.
1. As the first step, you need to add the solution from the previous exercise to Team Foundation Server source control. Right-click the solution in Solution Explorer and select Add solution to Source Control.

[image:]
Figure 20
Adding the solution to source control

2. Now select the FabricamFiber team project and click on OK.

[image:]
Figure 21
Selecting the team project

3. In Solution Explorer, right-click Solution ‘SquishTestProject’ and select Check In…. Team Explorer will display a dialog for the check-in. Click on Check-In to confirm.

[image:]
Figure 22
Confirming the source control check-in

4. Now you need to start a Team Foundation Server build to make the test available through Microsoft Test Manager. In Team Explorer, click on the Home button and select Builds.

[image:]
Figure 23
Opening the builds section in Team Explorer

5. Select New Build Definition to create a definition for the test.
[image:]
Figure 24
Create a new build definition

6. Visual Studio will open the configuration view for the build definition. In the Build Defaults section you need to specify a folder where the Team Foundation Server will save the build output to. Enable the checkbox in front of Copy build output to the following drop folder and enter \\VSALM\ffdrops into the text field. Finally, select File | Save SquishTestProject.

[image:]
Figure 25
Specify drop folder for build output

7. The next step is to queue a build to let Team Foundation Server produce the build artifacts that are required by Microsoft Test Manager. Right-click the SquishTestProject build definition in Team Explorer and select Queue New Build. When asked to confirm, click on Queue.

[image:]
Figure 26
Queue a build

8. The build will take a while to finish. Once it is ready, it will show up in Team Explorer.

[image:]
Figure 27
Finished build

9. Now you need to associate the Squish GUI test with test work item. To lookup the work item, enter AddressbookTest into the search field of Team Explorer and press the return key. Once the AddressbookTest item shows up in the Search Results list, double-click on it.

[image:]
Figure 28
Searching and open the test work item

10. The AddressbookTest will be opened. Select the Associated Automation tab and click on the Browse button.

[image:]
Figure 29
Open the dialog to browse for the Squish GUI test

11. In the following dialog, select the Squish GUI test suite_js and click on OK.

[image:]
Figure 30
Select the Squish GUI test to associate it with the Microsoft Test Manager test

12. Finally, save the work item by clicking on the Save Work Item button.

[image:]
Figure 31
Save Work Item button

13. Now it is time to execute the test through Microsoft Test Manager. If Microsoft Test Manager is not running any more, open it by selecting Start | All Programs | Microsoft Visual Studio 2012 | Microsoft Test Manager. Open the SquishTestPlan that we have created in exercise 1.
14. Open Testing Center | Test and select the SquishTestPlan in the left pane. In the right pane, right-click AddressbookTest and select Run with options.

[image:]
Figure 32
Location of the Run with option menu item

15. In the Run Options dialog, select the latest build in the Build in use combo box. Also make sure that SquishEnvironment is selected. Finally, click on Run to start the test run. The address book application will be launched and the Squish GUI test will be executed.

[image:]
Figure 33
Run Options dialog

16. Wait for the test to be finished. To see the test result, click on the Refresh button. In the Results Overview section under Current State of Tests, one passed test should be shown.

[image:]
Figure 34
Test run showing the result of the automated GUI test

17. The test results are stored as an attachment. Expand Attachments and double-click on the file tmiRun.trx, which will open the result in Visual Studio.

[image:]Figure 35
Location of the result file that can be opened in Visual Studio

18. In Visual Studio, double-click on the result in the Test Results view to open the details of the test run including the result of each verification.
To give feedback please write to sales@froglogic.com
Copyright © 2013 by froglogic GmbH. All rights reserved.

image1.png
RN
froglogic

image2.png
Testing Center ~ Plan Test Track Organize FabrikamFiber

image3.png
Add test plan

Plan name: [RcressbookTestPin]

Area path: FabrikamFiber

eration: FabrikamFiber

4 Change project

image4.emf

image5.png
@ (©) ‘ oy \ Testing Center ~

Plan

Test

Track

Organize

New v

Contents | Results | Properties

] New Test Case 2*: AddressbookTest

AddressbookTest

T

[iSaveand Close [l

Openttems 1) v

@ x

image6.png
STEPS SUMMARY TESTEDUSERSTORES ALLLINKS ATTACHMENTS ASSOCIATED AUTOMATION

llnsertstep % A W 3 Insert shored steps
B /Y L Ja
[} Action Expected Result

A | flnsert parameter)

Click here to add a step

image7.png
iswe and Close [l o %

image8.png
File Edit Source Refactor Novigate Search Run Window Help

C-@EE S

() Test Suites 52 =8
Tain()

2t

5 starchpplicavion("Add
4 activateltem(waitFord
5 activateltem(waitFord
s

7

e

9

10

1

12 if (cells[0] .

image9.png
(@ Testsuites 20 = O]

image10.png

image11.png
b Recent

Cloud.
Reporting
b SharePoint
Silverlight

Web

b Office
Cloud.
Reporting

b SharePoint

wre

b Online

NET Framework45 - Sortby: Default

‘Coded Ul Test Project Visual C#

Web Performance and Load Test... Visual C#

- Search Instaled Templ 9 =

Type: Visual C#
A project that contains unittests.

image12.png
b Online

Name
Locaon At docsmentaisal o 212 Prciects -
Sovionmame SyshTesprject Crsedvectory o slation

] Add to source control

image13.png
‘

lution Explorer A\
@ e-2udd o &R

Search Solution Explorer (Ctr+;)

3] Solution ‘SquishTestProjectl 1 project)

4] SquishTestProject1

b K Properties

b ea References

b

& open
Open With...

© ViewCode

5 View ClassDiagram
Scopeto This

B New Soluton Explorr View

R, Show on Code Map.

Exclude From Project
% cu X
§ Copy ctisC

% Rename

5 Properies AlteEnter

image14.png
orer & X

¥ &8 v- @ o--ua@m »RH

22 vsalmi FabrikemFiberCollection « | Search Solution Explorer (Ctrl+;) P

| | soution SquiTesproct @ projet)

x || Local Path: Not mapped

erCollection| | Name « Pen i Build foperties
&% FabrikamFiber Rebuild sferences
Clean
Run Code Anlysis
Scopeto This

5 New Solution Explrer View
R, Show on Code Msp
Calculte Code Metrics

O Newltem. CtrlShift+A Add 4

image15.png
Sort by: Default -

[E] == —

o o Vot Corems

image16.png
D SquishTestProject! - Microsoft Visual Studio (Administrator) Quick Launch (Ctrl+Q) p = & x
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP

©-0 B-@MWWM O - - bst-Dbug - A D-BY L.
£ ‘Source Control Explorer ~ Solution Explorer - B x
B @ o-2udd #R
3 Search Solution Explorer (Ctrl+;) p-
- 127 Solution 'SquishTestProjectl” (1 project)
g SQUISH TEST 4 [SquishTestProject]
g b & Properties
b e References
Test Suite: SquishTestlst
Test Cases:
Test Environment:
Key Value
it
Test Description:
«) Code Anslyss | Solution Explorer | Team Explorer | Class View

ErorList Output

114 PM
516/2012 |

i

image17.png
SQUISH TEST

Test Suite:

.z

Test Cases:

Test Environment.

Key

Test Description

Value

]

Import Squish Test Sute.

T squish-423 ove-wind2 B

> 0 bin

image18.png
4 Not Run Tests (1)
© SquisTestt.

image19.png
Test Explorer ~ B X squishTestl.st [SquishTest] Test Output-suite js-2-1 = X ¥
S [z~ Search p-

TestNeme: suite js
X Streaming Video: Improving ¢

RunAll | Run.. v

4 Passed Tests (1) ‘
SaquishTestl 2252

Test Outcome: @ Passed

Attachments

-3 x

E 2 Julia@VSALM 2012-05-16 1

S - % Run - %@ Debug -

SquishTestl

Sources SquishTestLst © Testrun completed Results: 1/1 passed; tem(s) checked: 0

Result Test Name. D Error Message
suite js cusers\julia\doct

© TestPassed -t

Elapsed time: 22 sec

image20.png
TR souishTestl st [SquishTest]

Source Control Explorer

Test Output-suite js-2-1 8 X v

(=] Common Results.

TestRun:
Test Name:
Result
Duration:

Julia@VSALM 2012-05-1612:20:00

suite js
@ pessed
0001005860133

Computer Name: VSALM

StrtTime 5/16/2012122001 PM
End Time: 5/16/2012122101 PM
Results Time Location Message Details -
START 5/16/201212:2001 PM Start suite s Test suite ' started
START_TEST_CASE 5/16/2012122001 PM Start tst general Test Case st general
pass 5/16/2012122009PM suite js/tst genera... Verfied True expression
pass 5/16/20121220:43PM suite j/tst genera... Verfied True expression
pass 5/16/20121220:18 PM suite js/tst genera... Verfied True expression
pass 5/16/201212:20:18 PM _suite js/tst genera... Comparison ‘Jane and Jane’ are eq
pass 5/16/201212:20:18 PM _suite_js/tst genera... Comparison Doe’ and ‘Doe’are equ
PASS. 5/16/201212:20:18 PM _ suite js/tst genera... Comparison ‘jane.doe@nowhere.cc | ¥
Test Results 1%
B 2 Juia@VSALM 2012.05-1612200(- | " Run ~ " Debug - 2-6T

© Testun completed Results: 1/1 passec; tem(s) checked: 0

Result

110 et

Test Name.

D
usesjoadoc]

Error Message

image21.png
er Test Output-suite js-2-1 % X ~

@ e-suam &
Search Solution Explorer (Ctrl+;)

q
Build Solution Ctrl+Shift+B nTestProject1
Rebuild Solution operties
Clean Solution prerences:

Run Code Analysis on Soluti Alt-F11 e
un nalysis on Solution B
© BatchBui

Configurstion Manager...
| B Mansge NuGet Packages...
T8 Ensble NuGet Package Restore
5 New Solution Explrer View
R, Show on Code Msp

Calculte Code Metrics

Add ,
£ et StatUp Prjects

Add Solution to Source Control.

Paste Ctrl+V
% Rename

image22.png
Indicate where to store your solution and projects in the Team Foundation Server and in your
workspace.

Team Foundation Server Detail
Server: vsalm)\FabrikamfiberCollection

Team Project Locstion:
abrikamFiber
> i BuidProcessTemplates
» =3 Dev
» =2 Main
> i Releases

Make New Folder
Type a name for the solution folder:
SquishTestProjectl

Solution and project file will be added to:
§/FabrikamFiber/SquishTestProjectl

image23.png
© O Q| @ SearchWorkltems (Cul P
Pending Changes | FabrikamFiber -
© Changeset 26 successfully checked in. x

image24.png
@ 0 seoch viorktims cat)
Home | SquishProject

& My Work
Request Code Review

© Pending Changes

Source Control Explorer

WorkItems
New Query

S

image25.png
Team

© O @ @ SeorchWorkltems (Cti) o~

Builds | FabrikemFiber -

Jew Build DefinitionDActions +

4 My Builds

image26.png
General ‘Specify the build controller and staging location for this build definition. These selections may
modified by the person queuing the build.

Trigger
Workspace Build controller:
il Def [vsaL - Conteler
Process Description:
Retention Policy

Staging location:

“This build does not copy output files o a drop folder

Copy build output to the following drop folder (UNC path, such as \\server\share):

WSALMTaropd

image27.png
trol Explorer « ~ I uil > 1

© O @] @ SearchWorkltems (Ctrl+)

Builds | FabrikamFiber ~
New Build Definiton | Actons
4 My Builds
4 My Favorite Build Defnitons

Drag build defnitions here to add them to your favorits,
4 All Build Definitions (showing 2 of 2)

Type here to filter the list P

& Nightly Fabrikam (Dev)
View B tProjectl

image28.png
Exp uilds
© O @] @ SearchWorkltems (Ctrl+

Builds | FabrikamFiber -

New Build Definition | Actions

image29.png
(<]

Search Results | FabrikamFiber -

4 Workltems
Found 1 work item where:
« Title, Description, or Repro Steps contain words
‘AddresshookTest"

Open as Query

50 - AddressbookTest

image30.png
STEPS SUMMARY TESTEDBACKLOGITEMS LINKS ATTACHMENTS

Automated test name

image31.png

image32.png
Test Case 80 (Modified) : AddressbookTest

AddressbookTest
Iteration FabrikamFiber

image33.png
Test suite: ite ID: 5)

quishTestPlan

b Run v D Resume |) Viewresults [Opentestcase | @ & @ @

Jom <0 [T [Tester [Configuration | Prioty | Automated__|
= Active 1)
1 8 Adeshookiet Juialyina Windowss PR

b Run

@ Resumetest run

@ View resuts

(5 Opentestcsse

© Blocktest
o Resettestto sctive
@ Pastest
O Filtest

image34.png
Run Options x
Build in use: TestProject] 201205161
Build configuration: Platform: Any CPU, Flavor: Debug ~

Run allthe tests manually
Automated test runs

Test settings: <Default> ~

image35.png
@ (©) ‘ oy \ Testing Center ~

stRuns |

Test

Do Exploratory Testing Exploratory T

Q »] Test Run 5: SquishTestPlan (Automated)

~ Summry (@ Completed - Mark ss Completed)

Tite: SaEhTEstEln (Automated)

Owner: Julia iyiana
Datestarted: 5/16/20121:43:44 PM
Date completed: 5/16/2012 1436 PM | Stop run

Run type: Automated

Comments:

A Results Overview (1 Tests)

Current State of Tests

v Attachments (2)

v Tests(1)

Tracl

ns | VertyB

Testsetings:
Test environment:
Test controler:
Build:

Testrun log:

Organize

<Detaut>
SaquishEnvironment

vaalmg901

SquishTestPrcject] 20120516.1 (Platforms Any CPU, Flavor:D...

View

image36.png
~ Attachments (2)

25 Open [Hlswve s % Add X

