
Supported Platforms:

Windows (32- and 64-bit)

Linux (32- and 64-bit)

Mac OS X (32- and 64-bit)

Embedded Operating Systems

UNIX (Solaris, AIX, ...)

Inquire about additional platforms and custom
toolchains

Use Squish Coco at every stage of testing:

Unit

Automated

Manual

Etc.

...

“Squish Coco is a test engineer’s equivalent
to a programmer’s debugger, only instead of
helping to understand bugs, Squish Coco
helps to reveal bugs by highlighting untested
statements.”

Sébastien Fricker, Lead Developer

Squish Coco’s code coverage toolchain provides wrap-
pers for standard compilers to build instrumented ver-
sions of applications – with no source code changes
necessary. Tests executed against an instrumented
application produce data which Squish Coco analyzes.
The analysis ensures testing coverage is achieved by:

Discovering untested sections of code

Identifying redundant tests

Finding dead code

Squish Coco also:

Determines the optimal test execution order,
maximizing code coverage in a given time frame.

Helps maintain coverage levels between releases:
Comparing coverage differences between two
application versions and identifying where new
tests are needed.

Provides advanced coverage analysis, merging and
analyzing multiple execution reports.

A complete, cross-platform code coverage toolchain for C, C++, C# and Tcl applications.

The Squish Coco Toolchain: - CoverageScanner analyzes and instruments C,
C++, C# and Tcl applications. - CoverageBrowser displays and manages coverage
analysis data and results from a sophisticated GUI.
(Available to commercial licensees only.) - Microsoft® Visual Studio Add-in generates code
coverage configurations for all available C, C++ and
C# projects within the Visual Studio IDE.

Supported Coverage Levels:

Function coverage

Line coverage

Branch Coverage

Branch, Decision and Condition Coverage

More Information:

http://www.froglogic.com/squish/coco

C++ code coverage analysis when the addressbook application
is passed the -h (help) command line option.

 1 int main(int argc, char **argv) {
 2 QApplication app(argc, argv); 1 Executed code
 3 if (argc == 2) { 0-1 argc == 2: was never false
 4 QString arg(argv[1]); 1 Executed code
 5 if (arg == “-h” || 0-1 arg==“-h“: was never false
 6 arg == “--help”) { 0 arg==“--help“: was never true or false
 7 QTextStream out(stderr); 1 Executed code
 8 return 1; 1 Executed code
 9 out << “usage: “<< argv[0] << “\n”; X Unreachable code
 10 } -
 11 } -
 12 MainWindow mainWindow; 0 Never executed

Result Summary
Lines executed: 4
Lines not executed: 2
Lines of dead code: 1
Expressions not covered: 3
Decision branches not executed: 2

contact
sales@froglogic.com
www.froglogic.com

