| Line | Source Code | Coverage |
|---|
| 1 | /**************************************************************************** | - |
| 2 | ** | - |
| 3 | ** Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies). | - |
| 4 | ** Contact: http://www.qt-project.org/legal | - |
| 5 | ** | - |
| 6 | ** This file is part of the QtGui module of the Qt Toolkit. | - |
| 7 | ** | - |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ | - |
| 9 | ** Commercial License Usage | - |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in | - |
| 11 | ** accordance with the commercial license agreement provided with the | - |
| 12 | ** Software or, alternatively, in accordance with the terms contained in | - |
| 13 | ** a written agreement between you and Digia. For licensing terms and | - |
| 14 | ** conditions see http://qt.digia.com/licensing. For further information | - |
| 15 | ** use the contact form at http://qt.digia.com/contact-us. | - |
| 16 | ** | - |
| 17 | ** GNU Lesser General Public License Usage | - |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser | - |
| 19 | ** General Public License version 2.1 as published by the Free Software | - |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL included in the | - |
| 21 | ** packaging of this file. Please review the following information to | - |
| 22 | ** ensure the GNU Lesser General Public License version 2.1 requirements | - |
| 23 | ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. | - |
| 24 | ** | - |
| 25 | ** In addition, as a special exception, Digia gives you certain additional | - |
| 26 | ** rights. These rights are described in the Digia Qt LGPL Exception | - |
| 27 | ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. | - |
| 28 | ** | - |
| 29 | ** GNU General Public License Usage | - |
| 30 | ** Alternatively, this file may be used under the terms of the GNU | - |
| 31 | ** General Public License version 3.0 as published by the Free Software | - |
| 32 | ** Foundation and appearing in the file LICENSE.GPL included in the | - |
| 33 | ** packaging of this file. Please review the following information to | - |
| 34 | ** ensure the GNU General Public License version 3.0 requirements will be | - |
| 35 | ** met: http://www.gnu.org/copyleft/gpl.html. | - |
| 36 | ** | - |
| 37 | ** | - |
| 38 | ** $QT_END_LICENSE$ | - |
| 39 | ** | - |
| 40 | ****************************************************************************/ | - |
| 41 | | - |
| 42 | #include "qquaternion.h" | - |
| 43 | #include <QtCore/qdatastream.h> | - |
| 44 | #include <QtCore/qmath.h> | - |
| 45 | #include <QtCore/qvariant.h> | - |
| 46 | #include <QtCore/qdebug.h> | - |
| 47 | | - |
| 48 | #include <cmath> | - |
| 49 | | - |
| 50 | QT_BEGIN_NAMESPACE | - |
| 51 | | - |
| 52 | #ifndef QT_NO_QUATERNION | - |
| 53 | | - |
| 54 | /*! | - |
| 55 | \class QQuaternion | - |
| 56 | \brief The QQuaternion class represents a quaternion consisting of a vector and scalar. | - |
| 57 | \since 4.6 | - |
| 58 | \ingroup painting-3D | - |
| 59 | \inmodule QtGui | - |
| 60 | | - |
| 61 | Quaternions are used to represent rotations in 3D space, and | - |
| 62 | consist of a 3D rotation axis specified by the x, y, and z | - |
| 63 | coordinates, and a scalar representing the rotation angle. | - |
| 64 | */ | - |
| 65 | | - |
| 66 | /*! | - |
| 67 | \fn QQuaternion::QQuaternion() | - |
| 68 | | - |
| 69 | Constructs an identity quaternion, i.e. with coordinates (1, 0, 0, 0). | - |
| 70 | */ | - |
| 71 | | - |
| 72 | /*! | - |
| 73 | \fn QQuaternion::QQuaternion(float scalar, float xpos, float ypos, float zpos) | - |
| 74 | | - |
| 75 | Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos) | - |
| 76 | and \a scalar. | - |
| 77 | */ | - |
| 78 | | - |
| 79 | #ifndef QT_NO_VECTOR3D | - |
| 80 | | - |
| 81 | /*! | - |
| 82 | \fn QQuaternion::QQuaternion(float scalar, const QVector3D& vector) | - |
| 83 | | - |
| 84 | Constructs a quaternion vector from the specified \a vector and | - |
| 85 | \a scalar. | - |
| 86 | | - |
| 87 | \sa vector(), scalar() | - |
| 88 | */ | - |
| 89 | | - |
| 90 | /*! | - |
| 91 | \fn QVector3D QQuaternion::vector() const | - |
| 92 | | - |
| 93 | Returns the vector component of this quaternion. | - |
| 94 | | - |
| 95 | \sa setVector(), scalar() | - |
| 96 | */ | - |
| 97 | | - |
| 98 | /*! | - |
| 99 | \fn void QQuaternion::setVector(const QVector3D& vector) | - |
| 100 | | - |
| 101 | Sets the vector component of this quaternion to \a vector. | - |
| 102 | | - |
| 103 | \sa vector(), setScalar() | - |
| 104 | */ | - |
| 105 | | - |
| 106 | #endif | - |
| 107 | | - |
| 108 | /*! | - |
| 109 | \fn void QQuaternion::setVector(float x, float y, float z) | - |
| 110 | | - |
| 111 | Sets the vector component of this quaternion to (\a x, \a y, \a z). | - |
| 112 | | - |
| 113 | \sa vector(), setScalar() | - |
| 114 | */ | - |
| 115 | | - |
| 116 | #ifndef QT_NO_VECTOR4D | - |
| 117 | | - |
| 118 | /*! | - |
| 119 | \fn QQuaternion::QQuaternion(const QVector4D& vector) | - |
| 120 | | - |
| 121 | Constructs a quaternion from the components of \a vector. | - |
| 122 | */ | - |
| 123 | | - |
| 124 | /*! | - |
| 125 | \fn QVector4D QQuaternion::toVector4D() const | - |
| 126 | | - |
| 127 | Returns this quaternion as a 4D vector. | - |
| 128 | */ | - |
| 129 | | - |
| 130 | #endif | - |
| 131 | | - |
| 132 | /*! | - |
| 133 | \fn bool QQuaternion::isNull() const | - |
| 134 | | - |
| 135 | Returns true if the x, y, z, and scalar components of this | - |
| 136 | quaternion are set to 0.0; otherwise returns false. | - |
| 137 | */ | - |
| 138 | | - |
| 139 | /*! | - |
| 140 | \fn bool QQuaternion::isIdentity() const | - |
| 141 | | - |
| 142 | Returns true if the x, y, and z components of this | - |
| 143 | quaternion are set to 0.0, and the scalar component is set | - |
| 144 | to 1.0; otherwise returns false. | - |
| 145 | */ | - |
| 146 | | - |
| 147 | /*! | - |
| 148 | \fn float QQuaternion::x() const | - |
| 149 | | - |
| 150 | Returns the x coordinate of this quaternion's vector. | - |
| 151 | | - |
| 152 | \sa setX(), y(), z(), scalar() | - |
| 153 | */ | - |
| 154 | | - |
| 155 | /*! | - |
| 156 | \fn float QQuaternion::y() const | - |
| 157 | | - |
| 158 | Returns the y coordinate of this quaternion's vector. | - |
| 159 | | - |
| 160 | \sa setY(), x(), z(), scalar() | - |
| 161 | */ | - |
| 162 | | - |
| 163 | /*! | - |
| 164 | \fn float QQuaternion::z() const | - |
| 165 | | - |
| 166 | Returns the z coordinate of this quaternion's vector. | - |
| 167 | | - |
| 168 | \sa setZ(), x(), y(), scalar() | - |
| 169 | */ | - |
| 170 | | - |
| 171 | /*! | - |
| 172 | \fn float QQuaternion::scalar() const | - |
| 173 | | - |
| 174 | Returns the scalar component of this quaternion. | - |
| 175 | | - |
| 176 | \sa setScalar(), x(), y(), z() | - |
| 177 | */ | - |
| 178 | | - |
| 179 | /*! | - |
| 180 | \fn void QQuaternion::setX(float x) | - |
| 181 | | - |
| 182 | Sets the x coordinate of this quaternion's vector to the given | - |
| 183 | \a x coordinate. | - |
| 184 | | - |
| 185 | \sa x(), setY(), setZ(), setScalar() | - |
| 186 | */ | - |
| 187 | | - |
| 188 | /*! | - |
| 189 | \fn void QQuaternion::setY(float y) | - |
| 190 | | - |
| 191 | Sets the y coordinate of this quaternion's vector to the given | - |
| 192 | \a y coordinate. | - |
| 193 | | - |
| 194 | \sa y(), setX(), setZ(), setScalar() | - |
| 195 | */ | - |
| 196 | | - |
| 197 | /*! | - |
| 198 | \fn void QQuaternion::setZ(float z) | - |
| 199 | | - |
| 200 | Sets the z coordinate of this quaternion's vector to the given | - |
| 201 | \a z coordinate. | - |
| 202 | | - |
| 203 | \sa z(), setX(), setY(), setScalar() | - |
| 204 | */ | - |
| 205 | | - |
| 206 | /*! | - |
| 207 | \fn void QQuaternion::setScalar(float scalar) | - |
| 208 | | - |
| 209 | Sets the scalar component of this quaternion to \a scalar. | - |
| 210 | | - |
| 211 | \sa scalar(), setX(), setY(), setZ() | - |
| 212 | */ | - |
| 213 | | - |
| 214 | /*! | - |
| 215 | Returns the length of the quaternion. This is also called the "norm". | - |
| 216 | | - |
| 217 | \sa lengthSquared(), normalized() | - |
| 218 | */ | - |
| 219 | float QQuaternion::length() const | - |
| 220 | { | - |
| 221 | return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp); executed: return qSqrt(xp * xp + yp * yp + zp * zp + wp * wp);Execution Count:28 | 28 |
| 222 | } | - |
| 223 | | - |
| 224 | /*! | - |
| 225 | Returns the squared length of the quaternion. | - |
| 226 | | - |
| 227 | \sa length() | - |
| 228 | */ | - |
| 229 | float QQuaternion::lengthSquared() const | - |
| 230 | { | - |
| 231 | return xp * xp + yp * yp + zp * zp + wp * wp; executed: return xp * xp + yp * yp + zp * zp + wp * wp;Execution Count:10 | 10 |
| 232 | } | - |
| 233 | | - |
| 234 | /*! | - |
| 235 | Returns the normalized unit form of this quaternion. | - |
| 236 | | - |
| 237 | If this quaternion is null, then a null quaternion is returned. | - |
| 238 | If the length of the quaternion is very close to 1, then the quaternion | - |
| 239 | will be returned as-is. Otherwise the normalized form of the | - |
| 240 | quaternion of length 1 will be returned. | - |
| 241 | | - |
| 242 | \sa length(), normalize() | - |
| 243 | */ | - |
| 244 | QQuaternion QQuaternion::normalized() const | - |
| 245 | { | - |
| 246 | // Need some extra precision if the length is very small. | - |
| 247 | double len = double(xp) * double(xp) + executed (the execution status of this line is deduced): double len = double(xp) * double(xp) + | - |
| 248 | double(yp) * double(yp) + executed (the execution status of this line is deduced): double(yp) * double(yp) + | - |
| 249 | double(zp) * double(zp) + executed (the execution status of this line is deduced): double(zp) * double(zp) + | - |
| 250 | double(wp) * double(wp); executed (the execution status of this line is deduced): double(wp) * double(wp); | - |
| 251 | if (qFuzzyIsNull(len - 1.0f)) evaluated: qFuzzyIsNull(len - 1.0f)| yes Evaluation Count:18 | yes Evaluation Count:61 |
| 18-61 |
| 252 | return *this; executed: return *this;Execution Count:18 | 18 |
| 253 | else if (!qFuzzyIsNull(len)) evaluated: !qFuzzyIsNull(len)| yes Evaluation Count:60 | yes Evaluation Count:1 |
| 1-60 |
| 254 | return *this / qSqrt(len); executed: return *this / qSqrt(len);Execution Count:60 | 60 |
| 255 | else | - |
| 256 | return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f); executed: return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f);Execution Count:1 | 1 |
| 257 | } | - |
| 258 | | - |
| 259 | /*! | - |
| 260 | Normalizes the currect quaternion in place. Nothing happens if this | - |
| 261 | is a null quaternion or the length of the quaternion is very close to 1. | - |
| 262 | | - |
| 263 | \sa length(), normalized() | - |
| 264 | */ | - |
| 265 | void QQuaternion::normalize() | - |
| 266 | { | - |
| 267 | // Need some extra precision if the length is very small. | - |
| 268 | double len = double(xp) * double(xp) + executed (the execution status of this line is deduced): double len = double(xp) * double(xp) + | - |
| 269 | double(yp) * double(yp) + executed (the execution status of this line is deduced): double(yp) * double(yp) + | - |
| 270 | double(zp) * double(zp) + executed (the execution status of this line is deduced): double(zp) * double(zp) + | - |
| 271 | double(wp) * double(wp); executed (the execution status of this line is deduced): double(wp) * double(wp); | - |
| 272 | if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len)) evaluated: qFuzzyIsNull(len - 1.0f)| yes Evaluation Count:8 | yes Evaluation Count:2 |
evaluated: qFuzzyIsNull(len)| yes Evaluation Count:1 | yes Evaluation Count:1 |
| 1-8 |
| 273 | return; executed: return;Execution Count:9 | 9 |
| 274 | | - |
| 275 | len = qSqrt(len); executed (the execution status of this line is deduced): len = qSqrt(len); | - |
| 276 | | - |
| 277 | xp /= len; executed (the execution status of this line is deduced): xp /= len; | - |
| 278 | yp /= len; executed (the execution status of this line is deduced): yp /= len; | - |
| 279 | zp /= len; executed (the execution status of this line is deduced): zp /= len; | - |
| 280 | wp /= len; executed (the execution status of this line is deduced): wp /= len; | - |
| 281 | } executed: }Execution Count:1 | 1 |
| 282 | | - |
| 283 | /*! | - |
| 284 | \fn QQuaternion QQuaternion::conjugate() const | - |
| 285 | | - |
| 286 | Returns the conjugate of this quaternion, which is | - |
| 287 | (-x, -y, -z, scalar). | - |
| 288 | */ | - |
| 289 | | - |
| 290 | /*! | - |
| 291 | Rotates \a vector with this quaternion to produce a new vector | - |
| 292 | in 3D space. The following code: | - |
| 293 | | - |
| 294 | \code | - |
| 295 | QVector3D result = q.rotatedVector(vector); | - |
| 296 | \endcode | - |
| 297 | | - |
| 298 | is equivalent to the following: | - |
| 299 | | - |
| 300 | \code | - |
| 301 | QVector3D result = (q * QQuaternion(0, vector) * q.conjugate()).vector(); | - |
| 302 | \endcode | - |
| 303 | */ | - |
| 304 | QVector3D QQuaternion::rotatedVector(const QVector3D& vector) const | - |
| 305 | { | - |
| 306 | return (*this * QQuaternion(0, vector) * conjugate()).vector(); executed: return (*this * QQuaternion(0, vector) * conjugate()).vector();Execution Count:8 | 8 |
| 307 | } | - |
| 308 | | - |
| 309 | /*! | - |
| 310 | \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion) | - |
| 311 | | - |
| 312 | Adds the given \a quaternion to this quaternion and returns a reference to | - |
| 313 | this quaternion. | - |
| 314 | | - |
| 315 | \sa operator-=() | - |
| 316 | */ | - |
| 317 | | - |
| 318 | /*! | - |
| 319 | \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion) | - |
| 320 | | - |
| 321 | Subtracts the given \a quaternion from this quaternion and returns a | - |
| 322 | reference to this quaternion. | - |
| 323 | | - |
| 324 | \sa operator+=() | - |
| 325 | */ | - |
| 326 | | - |
| 327 | /*! | - |
| 328 | \fn QQuaternion &QQuaternion::operator*=(float factor) | - |
| 329 | | - |
| 330 | Multiplies this quaternion's components by the given \a factor, and | - |
| 331 | returns a reference to this quaternion. | - |
| 332 | | - |
| 333 | \sa operator/=() | - |
| 334 | */ | - |
| 335 | | - |
| 336 | /*! | - |
| 337 | \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion) | - |
| 338 | | - |
| 339 | Multiplies this quaternion by \a quaternion and returns a reference | - |
| 340 | to this quaternion. | - |
| 341 | */ | - |
| 342 | | - |
| 343 | /*! | - |
| 344 | \fn QQuaternion &QQuaternion::operator/=(float divisor) | - |
| 345 | | - |
| 346 | Divides this quaternion's components by the given \a divisor, and | - |
| 347 | returns a reference to this quaternion. | - |
| 348 | | - |
| 349 | \sa operator*=() | - |
| 350 | */ | - |
| 351 | | - |
| 352 | #ifndef QT_NO_VECTOR3D | - |
| 353 | | - |
| 354 | /*! | - |
| 355 | Creates a normalized quaternion that corresponds to rotating through | - |
| 356 | \a angle degrees about the specified 3D \a axis. | - |
| 357 | */ | - |
| 358 | QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, float angle) | - |
| 359 | { | - |
| 360 | // Algorithm from: | - |
| 361 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 | - |
| 362 | // We normalize the result just in case the values are close | - |
| 363 | // to zero, as suggested in the above FAQ. | - |
| 364 | float a = (angle / 2.0f) * M_PI / 180.0f; executed (the execution status of this line is deduced): float a = (angle / 2.0f) * 3.14159265358979323846 / 180.0f; | - |
| 365 | float s = sinf(a); executed (the execution status of this line is deduced): float s = sinf(a); | - |
| 366 | float c = cosf(a); executed (the execution status of this line is deduced): float c = cosf(a); | - |
| 367 | QVector3D ax = axis.normalized(); executed (the execution status of this line is deduced): QVector3D ax = axis.normalized(); | - |
| 368 | return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized(); executed: return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized();Execution Count:21 | 21 |
| 369 | } | - |
| 370 | | - |
| 371 | #endif | - |
| 372 | | - |
| 373 | /*! | - |
| 374 | Creates a normalized quaternion that corresponds to rotating through | - |
| 375 | \a angle degrees about the 3D axis (\a x, \a y, \a z). | - |
| 376 | */ | - |
| 377 | QQuaternion QQuaternion::fromAxisAndAngle | - |
| 378 | (float x, float y, float z, float angle) | - |
| 379 | { | - |
| 380 | float length = qSqrt(x * x + y * y + z * z); executed (the execution status of this line is deduced): float length = qSqrt(x * x + y * y + z * z); | - |
| 381 | if (!qFuzzyIsNull(length - 1.0f) && !qFuzzyIsNull(length)) { evaluated: !qFuzzyIsNull(length - 1.0f)| yes Evaluation Count:32 | yes Evaluation Count:3 |
evaluated: !qFuzzyIsNull(length)| yes Evaluation Count:31 | yes Evaluation Count:1 |
| 1-32 |
| 382 | x /= length; executed (the execution status of this line is deduced): x /= length; | - |
| 383 | y /= length; executed (the execution status of this line is deduced): y /= length; | - |
| 384 | z /= length; executed (the execution status of this line is deduced): z /= length; | - |
| 385 | } executed: }Execution Count:31 | 31 |
| 386 | float a = (angle / 2.0f) * M_PI / 180.0f; executed (the execution status of this line is deduced): float a = (angle / 2.0f) * 3.14159265358979323846 / 180.0f; | - |
| 387 | float s = sinf(a); executed (the execution status of this line is deduced): float s = sinf(a); | - |
| 388 | float c = cosf(a); executed (the execution status of this line is deduced): float c = cosf(a); | - |
| 389 | return QQuaternion(c, x * s, y * s, z * s).normalized(); executed: return QQuaternion(c, x * s, y * s, z * s).normalized();Execution Count:35 | 35 |
| 390 | } | - |
| 391 | | - |
| 392 | /*! | - |
| 393 | \fn bool operator==(const QQuaternion &q1, const QQuaternion &q2) | - |
| 394 | \relates QQuaternion | - |
| 395 | | - |
| 396 | Returns true if \a q1 is equal to \a q2; otherwise returns false. | - |
| 397 | This operator uses an exact floating-point comparison. | - |
| 398 | */ | - |
| 399 | | - |
| 400 | /*! | - |
| 401 | \fn bool operator!=(const QQuaternion &q1, const QQuaternion &q2) | - |
| 402 | \relates QQuaternion | - |
| 403 | | - |
| 404 | Returns true if \a q1 is not equal to \a q2; otherwise returns false. | - |
| 405 | This operator uses an exact floating-point comparison. | - |
| 406 | */ | - |
| 407 | | - |
| 408 | /*! | - |
| 409 | \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2) | - |
| 410 | \relates QQuaternion | - |
| 411 | | - |
| 412 | Returns a QQuaternion object that is the sum of the given quaternions, | - |
| 413 | \a q1 and \a q2; each component is added separately. | - |
| 414 | | - |
| 415 | \sa QQuaternion::operator+=() | - |
| 416 | */ | - |
| 417 | | - |
| 418 | /*! | - |
| 419 | \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2) | - |
| 420 | \relates QQuaternion | - |
| 421 | | - |
| 422 | Returns a QQuaternion object that is formed by subtracting | - |
| 423 | \a q2 from \a q1; each component is subtracted separately. | - |
| 424 | | - |
| 425 | \sa QQuaternion::operator-=() | - |
| 426 | */ | - |
| 427 | | - |
| 428 | /*! | - |
| 429 | \fn const QQuaternion operator*(float factor, const QQuaternion &quaternion) | - |
| 430 | \relates QQuaternion | - |
| 431 | | - |
| 432 | Returns a copy of the given \a quaternion, multiplied by the | - |
| 433 | given \a factor. | - |
| 434 | | - |
| 435 | \sa QQuaternion::operator*=() | - |
| 436 | */ | - |
| 437 | | - |
| 438 | /*! | - |
| 439 | \fn const QQuaternion operator*(const QQuaternion &quaternion, float factor) | - |
| 440 | \relates QQuaternion | - |
| 441 | | - |
| 442 | Returns a copy of the given \a quaternion, multiplied by the | - |
| 443 | given \a factor. | - |
| 444 | | - |
| 445 | \sa QQuaternion::operator*=() | - |
| 446 | */ | - |
| 447 | | - |
| 448 | /*! | - |
| 449 | \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2) | - |
| 450 | \relates QQuaternion | - |
| 451 | | - |
| 452 | Multiplies \a q1 and \a q2 using quaternion multiplication. | - |
| 453 | The result corresponds to applying both of the rotations specified | - |
| 454 | by \a q1 and \a q2. | - |
| 455 | | - |
| 456 | \sa QQuaternion::operator*=() | - |
| 457 | */ | - |
| 458 | | - |
| 459 | /*! | - |
| 460 | \fn const QQuaternion operator-(const QQuaternion &quaternion) | - |
| 461 | \relates QQuaternion | - |
| 462 | \overload | - |
| 463 | | - |
| 464 | Returns a QQuaternion object that is formed by changing the sign of | - |
| 465 | all three components of the given \a quaternion. | - |
| 466 | | - |
| 467 | Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}. | - |
| 468 | */ | - |
| 469 | | - |
| 470 | /*! | - |
| 471 | \fn const QQuaternion operator/(const QQuaternion &quaternion, float divisor) | - |
| 472 | \relates QQuaternion | - |
| 473 | | - |
| 474 | Returns the QQuaternion object formed by dividing all components of | - |
| 475 | the given \a quaternion by the given \a divisor. | - |
| 476 | | - |
| 477 | \sa QQuaternion::operator/=() | - |
| 478 | */ | - |
| 479 | | - |
| 480 | /*! | - |
| 481 | \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2) | - |
| 482 | \relates QQuaternion | - |
| 483 | | - |
| 484 | Returns true if \a q1 and \a q2 are equal, allowing for a small | - |
| 485 | fuzziness factor for floating-point comparisons; false otherwise. | - |
| 486 | */ | - |
| 487 | | - |
| 488 | /*! | - |
| 489 | Interpolates along the shortest spherical path between the | - |
| 490 | rotational positions \a q1 and \a q2. The value \a t should | - |
| 491 | be between 0 and 1, indicating the spherical distance to travel | - |
| 492 | between \a q1 and \a q2. | - |
| 493 | | - |
| 494 | If \a t is less than or equal to 0, then \a q1 will be returned. | - |
| 495 | If \a t is greater than or equal to 1, then \a q2 will be returned. | - |
| 496 | | - |
| 497 | \sa nlerp() | - |
| 498 | */ | - |
| 499 | QQuaternion QQuaternion::slerp | - |
| 500 | (const QQuaternion& q1, const QQuaternion& q2, float t) | - |
| 501 | { | - |
| 502 | // Handle the easy cases first. | - |
| 503 | if (t <= 0.0f) evaluated: t <= 0.0f| yes Evaluation Count:2 | yes Evaluation Count:4 |
| 2-4 |
| 504 | return q1; executed: return q1;Execution Count:2 | 2 |
| 505 | else if (t >= 1.0f) evaluated: t >= 1.0f| yes Evaluation Count:2 | yes Evaluation Count:2 |
| 2 |
| 506 | return q2; executed: return q2;Execution Count:2 | 2 |
| 507 | | - |
| 508 | // Determine the angle between the two quaternions. | - |
| 509 | QQuaternion q2b; executed (the execution status of this line is deduced): QQuaternion q2b; | - |
| 510 | float dot; executed (the execution status of this line is deduced): float dot; | - |
| 511 | dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp; executed (the execution status of this line is deduced): dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp; | - |
| 512 | if (dot >= 0.0f) { evaluated: dot >= 0.0f| yes Evaluation Count:1 | yes Evaluation Count:1 |
| 1 |
| 513 | q2b = q2; executed (the execution status of this line is deduced): q2b = q2; | - |
| 514 | } else { executed: }Execution Count:1 | 1 |
| 515 | q2b = -q2; executed (the execution status of this line is deduced): q2b = -q2; | - |
| 516 | dot = -dot; executed (the execution status of this line is deduced): dot = -dot; | - |
| 517 | } executed: }Execution Count:1 | 1 |
| 518 | | - |
| 519 | // Get the scale factors. If they are too small, | - |
| 520 | // then revert to simple linear interpolation. | - |
| 521 | float factor1 = 1.0f - t; executed (the execution status of this line is deduced): float factor1 = 1.0f - t; | - |
| 522 | float factor2 = t; executed (the execution status of this line is deduced): float factor2 = t; | - |
| 523 | if ((1.0f - dot) > 0.0000001) { partially evaluated: (1.0f - dot) > 0.0000001| yes Evaluation Count:2 | no Evaluation Count:0 |
| 0-2 |
| 524 | float angle = acosf(dot); executed (the execution status of this line is deduced): float angle = acosf(dot); | - |
| 525 | float sinOfAngle = sinf(angle); executed (the execution status of this line is deduced): float sinOfAngle = sinf(angle); | - |
| 526 | if (sinOfAngle > 0.0000001) { partially evaluated: sinOfAngle > 0.0000001| yes Evaluation Count:2 | no Evaluation Count:0 |
| 0-2 |
| 527 | factor1 = sinf((1.0f - t) * angle) / sinOfAngle; executed (the execution status of this line is deduced): factor1 = sinf((1.0f - t) * angle) / sinOfAngle; | - |
| 528 | factor2 = sinf(t * angle) / sinOfAngle; executed (the execution status of this line is deduced): factor2 = sinf(t * angle) / sinOfAngle; | - |
| 529 | } executed: }Execution Count:2 | 2 |
| 530 | } executed: }Execution Count:2 | 2 |
| 531 | | - |
| 532 | // Construct the result quaternion. | - |
| 533 | return q1 * factor1 + q2b * factor2; executed: return q1 * factor1 + q2b * factor2;Execution Count:2 | 2 |
| 534 | } | - |
| 535 | | - |
| 536 | /*! | - |
| 537 | Interpolates along the shortest linear path between the rotational | - |
| 538 | positions \a q1 and \a q2. The value \a t should be between 0 and 1, | - |
| 539 | indicating the distance to travel between \a q1 and \a q2. | - |
| 540 | The result will be normalized(). | - |
| 541 | | - |
| 542 | If \a t is less than or equal to 0, then \a q1 will be returned. | - |
| 543 | If \a t is greater than or equal to 1, then \a q2 will be returned. | - |
| 544 | | - |
| 545 | The nlerp() function is typically faster than slerp() and will | - |
| 546 | give approximate results to spherical interpolation that are | - |
| 547 | good enough for some applications. | - |
| 548 | | - |
| 549 | \sa slerp() | - |
| 550 | */ | - |
| 551 | QQuaternion QQuaternion::nlerp | - |
| 552 | (const QQuaternion& q1, const QQuaternion& q2, float t) | - |
| 553 | { | - |
| 554 | // Handle the easy cases first. | - |
| 555 | if (t <= 0.0f) evaluated: t <= 0.0f| yes Evaluation Count:2 | yes Evaluation Count:4 |
| 2-4 |
| 556 | return q1; executed: return q1;Execution Count:2 | 2 |
| 557 | else if (t >= 1.0f) evaluated: t >= 1.0f| yes Evaluation Count:2 | yes Evaluation Count:2 |
| 2 |
| 558 | return q2; executed: return q2;Execution Count:2 | 2 |
| 559 | | - |
| 560 | // Determine the angle between the two quaternions. | - |
| 561 | QQuaternion q2b; executed (the execution status of this line is deduced): QQuaternion q2b; | - |
| 562 | float dot; executed (the execution status of this line is deduced): float dot; | - |
| 563 | dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp; executed (the execution status of this line is deduced): dot = q1.xp * q2.xp + q1.yp * q2.yp + q1.zp * q2.zp + q1.wp * q2.wp; | - |
| 564 | if (dot >= 0.0f) evaluated: dot >= 0.0f| yes Evaluation Count:1 | yes Evaluation Count:1 |
| 1 |
| 565 | q2b = q2; executed: q2b = q2;Execution Count:1 | 1 |
| 566 | else | - |
| 567 | q2b = -q2; executed: q2b = -q2;Execution Count:1 | 1 |
| 568 | | - |
| 569 | // Perform the linear interpolation. | - |
| 570 | return (q1 * (1.0f - t) + q2b * t).normalized(); executed: return (q1 * (1.0f - t) + q2b * t).normalized();Execution Count:2 | 2 |
| 571 | } | - |
| 572 | | - |
| 573 | /*! | - |
| 574 | Returns the quaternion as a QVariant. | - |
| 575 | */ | - |
| 576 | QQuaternion::operator QVariant() const | - |
| 577 | { | - |
| 578 | return QVariant(QVariant::Quaternion, this); executed: return QVariant(QVariant::Quaternion, this);Execution Count:1 | 1 |
| 579 | } | - |
| 580 | | - |
| 581 | #ifndef QT_NO_DEBUG_STREAM | - |
| 582 | | - |
| 583 | QDebug operator<<(QDebug dbg, const QQuaternion &q) | - |
| 584 | { | - |
| 585 | dbg.nospace() << "QQuaternion(scalar:" << q.scalar() executed (the execution status of this line is deduced): dbg.nospace() << "QQuaternion(scalar:" << q.scalar() | - |
| 586 | << ", vector:(" << q.x() << ", " executed (the execution status of this line is deduced): << ", vector:(" << q.x() << ", " | - |
| 587 | << q.y() << ", " << q.z() << "))"; executed (the execution status of this line is deduced): << q.y() << ", " << q.z() << "))"; | - |
| 588 | return dbg.space(); executed: return dbg.space();Execution Count:1 | 1 |
| 589 | } | - |
| 590 | | - |
| 591 | #endif | - |
| 592 | | - |
| 593 | #ifndef QT_NO_DATASTREAM | - |
| 594 | | - |
| 595 | /*! | - |
| 596 | \fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) | - |
| 597 | \relates QQuaternion | - |
| 598 | | - |
| 599 | Writes the given \a quaternion to the given \a stream and returns a | - |
| 600 | reference to the stream. | - |
| 601 | | - |
| 602 | \sa {Serializing Qt Data Types} | - |
| 603 | */ | - |
| 604 | | - |
| 605 | QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) | - |
| 606 | { | - |
| 607 | stream << quaternion.scalar() << quaternion.x() never executed (the execution status of this line is deduced): stream << quaternion.scalar() << quaternion.x() | - |
| 608 | << quaternion.y() << quaternion.z(); never executed (the execution status of this line is deduced): << quaternion.y() << quaternion.z(); | - |
| 609 | return stream; never executed: return stream; | 0 |
| 610 | } | - |
| 611 | | - |
| 612 | /*! | - |
| 613 | \fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) | - |
| 614 | \relates QQuaternion | - |
| 615 | | - |
| 616 | Reads a quaternion from the given \a stream into the given \a quaternion | - |
| 617 | and returns a reference to the stream. | - |
| 618 | | - |
| 619 | \sa {Serializing Qt Data Types} | - |
| 620 | */ | - |
| 621 | | - |
| 622 | QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) | - |
| 623 | { | - |
| 624 | float scalar, x, y, z; never executed (the execution status of this line is deduced): float scalar, x, y, z; | - |
| 625 | stream >> scalar; never executed (the execution status of this line is deduced): stream >> scalar; | - |
| 626 | stream >> x; never executed (the execution status of this line is deduced): stream >> x; | - |
| 627 | stream >> y; never executed (the execution status of this line is deduced): stream >> y; | - |
| 628 | stream >> z; never executed (the execution status of this line is deduced): stream >> z; | - |
| 629 | quaternion.setScalar(scalar); never executed (the execution status of this line is deduced): quaternion.setScalar(scalar); | - |
| 630 | quaternion.setX(x); never executed (the execution status of this line is deduced): quaternion.setX(x); | - |
| 631 | quaternion.setY(y); never executed (the execution status of this line is deduced): quaternion.setY(y); | - |
| 632 | quaternion.setZ(z); never executed (the execution status of this line is deduced): quaternion.setZ(z); | - |
| 633 | return stream; never executed: return stream; | 0 |
| 634 | } | - |
| 635 | | - |
| 636 | #endif // QT_NO_DATASTREAM | - |
| 637 | | - |
| 638 | #endif | - |
| 639 | | - |
| 640 | QT_END_NAMESPACE | - |
| 641 | | - |
| | |